Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Journal of Cystic Fibrosis ; 21(Supplement 2):S339, 2022.
Article in English | EMBASE | ID: covidwho-2315958

ABSTRACT

Background: Next-generation SARS-CoV-2 vaccines demonstrated that nanoparticle messenger ribonucleic acid (mRNA) delivery is effective and safe for in vivo delivery in humans. Current treatments for cystic fibrosis (CF) primarily focus on modulator drug therapies designed to correct malfunctioning CF transmembrane conductance regulator (CFTR) protein, but these modulators are ineffective for the 10% of people with CF with variants that do not allow protein production. Among these is the splice variant 3120 + 1G >A, the most common CF-causing mutation in native Africans. Gene editing would allow production of CFTR protein and enhancement of function using available CFTR modulators. We have demonstrated that electroporation of a modified CRISPR-Cas9 base editor to primary human bronchial epithelial cells carrying 3120 + 1G >A and F508del mutant alleles achieved 75% genome editing of the splice variant, resulting in approximately 40% wild-type (WT) CFTR function [1]. Here,we evaluate the effectiveness of several new nanoparticle formulations at delivering green fluorescent protein (GFP) mRNA to CF bronchial epithelial (CFBE41o-) cells. Using the optimal formulation,we then tested the efficacy correction of the 3120 + 1G >Avariant in a CFTR expression minigene (EMG) integrated into the genome of isogenic CFBE cells using mRNA and plasmid deoxyribonucleic acid (DNA) encoding adenine base editor (ABE) and guide (g)RNA. Method(s): GFP served as a reporter to evaluate transfection efficiency, cell viability, and mean fluorescence intensity (MFI) for three dosages (150, 75, 32.5 ng of mRNA), four polymer-to-mRNA to weight (w/w) ratios (60, 40, 30, 20), and four polymers (R, Y, G, B). 7-AAD served as a live/dead stain to quantify viability, with flow cytometry results analyzed using FlowJo software. CFBE cells stably expressing the 3120 + 1G >A EMG were transfected with the optimized nanoparticle formulation to deliver ABE and gRNA at two dosages (150, 75 ng) of mRNA and DNA. CFTR function in CFBE cellswas measured by short circuit current, forskolin stimulation, and inh-172 inhibition as a measure of editing efficiency. Result(s): Flow cytometry showed that polymer R achieved more than 85% GFP transfection, compared with a maximum of approximately 35% for the other three polymers at the maximum 150-ng dose, with approximately 80% viability normalized to untreated cells. In addition, polymer R achieved GFP MFI more than one order of magnitude as high as other formulations (~30 000 vs 2700 MFI) for the other three polymers at 150-ng dose and 40 w/w ratio. CFBE cells transfected with polymer R nanoparticles containing ABE and guide RNA at 75 ng and 150 ng showed mean CFTR function increase to 10 muA 6 (standard error of the mean [SEM] 1.1 muA) (~10% of WT) and 6.3 muA (SEM 0.9 muA) (~6% of WT), respectively. Greater toxicity at the higher dose could explain the larger increase in CFTR current at the lower dose. DNA-encoded ABE plasmid and gRNA showed a less robust increase in CFTR function (2.9 muA [SEM 0.4 muA] for 75-ng dose;3.0 muA [SEM 0.4 muA] for 150-ng dose), which was probably a result of the nanoparticle formulation being optimized for RNA instead of DNA cargo or the additional intracellular barriers that must be overcome for successful DNA delivery. Conclusion(s): We demonstrated that an optimized nanoparticle formulation containing ABE and gRNA can correct splicing of isogenic cells bearing the 3120 + 1G >A CFTR variant, resulting in recovery of CFTR function. In ongoing work, we are adapting these nanoparticles for RNA- and DNAencoded ABE and gRNA delivery to primary human bronchial epithelial cells.Copyright © 2022, European Cystic Fibrosis Society. All rights reserved

2.
Topics in Antiviral Medicine ; 31(2):385, 2023.
Article in English | EMBASE | ID: covidwho-2315171

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the current global pandemic of the COVID-19, which has persisted partly through the emergence of new variants. A non-infectious, convenient, and reproducible in vitro system is needed to assess drug susceptibility of new variants of concern and potential drug resistance mutations. Method(s): The SARS-CoV-2 replicon protocol was adapted and optimized based on {Zhang 2021}. The replicon RNA was produced by in vitro transcription of full-length replicon DNA assembled by ligation of plasmid fragments encoding for the SARS-CoV-2 non-structural proteins (Nsps), nucleoprotein and gaussia luciferase reporter protein. Wild-type and mutant replicon RNAs were transfected into Huh7-1CN cells by electroporation and treated with remdesivir (RDV). To determine EC50 values, luciferase activity was determined at 48 hours post transfection. A recombinant SARS-CoV-2 virus rescue system {Xie 2020} was used to generate matching Nsp mutants for comparison with the replicon system. Result(s): The selected substitutions reflective of Omicron BA.5 sub-lineage BF.7 variant: the triple mutants (Nsp12 (P323L) +Nsp13 (R392C) + Nsp14 (I42V), and a single Nsp12 L247F mutant as well as several specific Nsp12 mutations identified by in vitro resistance selection with RDV or RDV parent nucleoside analog GS-441524 were cloned into the replicon and tested for susceptibility to RDV. RDV inhibited the SARS-CoV-2 wild-type replicon with a mean EC50 value of 14.7 +/- 3.5 nM (N=9). The Nsp12 P323L substitution, a common polymorphism in all major variants of concern including Omicron, was fully susceptible to RDV with a 0.6-fold change in EC50 from the wild-type. The Omicron BF.7 triple mutants and L247F were also fully susceptible to RDV with 0.5- and 0.4-fold changes, respectively. Nsp12 substitutions F480L, V557L, V792I, S759A+V792I, and C799F resulting from in vitro resistance selections with RDV showed minimal to moderate levels of reduced susceptibility to RDV (1.8 to 18.3-fold change) (Table 1). The RDV EC50 fold changes correlated between the noninfectious replicon and recombinant infection virus system (Table 1). Conclusion(s): The replicon system is a convenient and reproducible model to test the susceptibility of SARS-CoV-2 mutant variants to RDV and potentially other antivirals. The common Nsp12 polymorphisms in all variants including the highly transmissible Omicron variant were fully susceptible to RDV.

3.
Coronaviruses ; 3(1):42-48, 2022.
Article in English | EMBASE | ID: covidwho-2270332

ABSTRACT

The year 2020 was the most challenging period due to the havoc caused by the outbreak of novel coronavirus SARS-CoV-2. Scientists and researchers all around the world have endeav-ored every possible approach to find solutions in context to therapeutics and vaccines to control the spread of this life-threatening virus. The acceleration instigated by the outbreak of SARS-CoV-2 and its mutated strains has leveraged the use of numerous platform technologies for the development of vaccines against this unfathomable disease. Vaccines could play an important role in miti-gating the effects of COVID-19 and reducing the ongoing health crisis. Various innovative plat-forms like proteins, nucleic acids, viruses, and viral vectors have been exploited to fabricate vaccines depicting almost 90% of efficacy like BNT162b2, AZD1222, Ad5-nCoV, etc. Some of these vaccines are multipotent and have shown potent activity against newly emerged malicious strains of SARS-CoV-2 like B.1.351 and B.1.1.7. In this review article, we have gathered key findings from various sources of recently popularized vaccine candidates, which will provide an overview of potential vaccine candidates against this virus and will help the researchers to investi-gate possible ways to annihilate this menace and design new moieties.Copyright © 2022 Bentham Science Publishers.

4.
VacciMonitor ; 32 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2284839

ABSTRACT

The coronavirus disease-19 pandemic with the characteristics of asymptomatic condition, long incubation period and poor treatment has influenced the entire globe. Coronaviruses are important emergent pathogens, specifically, the recently emerged sever acute respiratory syndrome coronavirus 2, the causative virus of the current COVID-19 pandemic. To mitigate the virus and curtail the infection risk, vaccines are the most hopeful solution. The protein structure and genome sequence of SARS-CoV-2 were processed and provided in record time;providing feasibility to the development of COVID-19 vaccines. In an unprecedented scientific and technological effort, vaccines against SARS-CoV-2 have been developed in less than one year. This review addresses the approaches adopted for SARS-CoV-2 vaccine development and the effectiveness of the currently approved vaccines.Copyright © 2023, Finlay Ediciones. All rights reserved.

5.
Vaccine ; 41(16): 2696-2706, 2023 04 17.
Article in English | MEDLINE | ID: covidwho-2286790

ABSTRACT

BACKGROUND: HIV subtypes B and C together account for around 60% of HIV-1 cases worldwide. We evaluated the safety and immunogenicity of a subtype B DNA vaccine prime followed by a subtype C viral vector boost. METHODS: Fourteen healthy adults received DNA plasmid encoding HIV-1 subtype B nef/tat/vif and env (n = 11) or placebo (n = 3) intramuscularly (IM) via electroporation (EP) at 0, 1, and 3 months, followed by IM injection of recombinant vesicular stomatitis virus encoding subtype C Env or placebo at 6 and 9 months. Participants were assessed for safety, tolerability of EP, and Env-specific T-cell and antibody responses. RESULTS: EP was generally well tolerated, although some device-related adverse events did occur, and vaccine reactogenicity was mild to moderate. The vaccine stimulated Env-specific CD4 + T-cell responses in greater than 80% of recipients, and CD8 + T-cell responses in 30%. Subtype C Env-specific IgG binding antibodies (bAb) were elicited in all vaccine recipients, and antibody-dependent cell-mediated cytotoxicity (ADCC) responses to vaccine-matched subtype C targets in 80%. Negligible V1/V2 and neutralizing antibody (nAb) responses were detected. CONCLUSIONS: This prime/boost regimen was safe and tolerable, with some device-related events, and immunogenic. Although immunogenicity missed targets for an HIV vaccine, the DNA/rVSV platform may be useful for other applications. CLINICALTRIALS: gov: NCT02654080.


Subject(s)
AIDS Vaccines , HIV Infections , Vaccines, DNA , Vesicular Stomatitis , Adult , Animals , Humans , Immunization, Secondary , HIV Infections/prevention & control , Electroporation , Antibodies, Neutralizing , DNA , HIV Antibodies
6.
Cancers (Basel) ; 15(3)2023 Jan 18.
Article in English | MEDLINE | ID: covidwho-2285491

ABSTRACT

(1) Background: Calcium electroporation is a novel cancer treatment. It includes injecting calcium-solution and applying electric pulses to tumour tissue. Data on quality of life for patients with cutaneous metastases treated with calcium electroporation is limited. We evaluated quality of life in patients with skin metastases treated with calcium electroporation using qualitative interviews. (2) Methods: This investigation featured a subgroup from a non-randomised phase II study (CaEP-R) at Zealand University Hospital, Denmark, studying response to calcium electroporation in cutaneous metastasis (ClinicalTrials no. NCT04225767). Participants were interviewed at baseline before calcium electroporation treatment and after two months. Data was analysed phenomenologically; (3) Results: Interviews were conducted February 2020-November 2021. Nine patients were included, of which seven participated in both interviews. All seven patients expected treated tumours to disappear, symptom relief and minimal side effects. Most patients requested peer accounts. All patients found the treatment uncomfortable but acceptable; all thought their fears of electric pulses exceeded their experience. All would repeat the treatment if effective. Successful treatment had a positive effect on pain, symptomatic wounds, sleep, vigour and social inclination; (4) Conclusions: Calcium electroporation enhanced health-related quality of life by reducing symptoms and increasing social inclination. Peer accounts provide patients with a shortcut to confidence in treatment on top of doctors' recommendations.

7.
Res Rep Urol ; 15: 27-35, 2023.
Article in English | MEDLINE | ID: covidwho-2240985

ABSTRACT

Introduction: Irreversible electroporation (IRE) technology for prostate cancer (PC) generates consecutive electrical pulses between pairs of electrodes which move through tumorous cells, irreversibly perforate their membranes and eventually lead to cell death, while avoiding tissue thermal effect. The technique is used for primary focal lesions as well as for focal salvage cases. This series reports short term oncological control, quality of life and safety results. Methods: Retrospective data were collected from 45 consecutive cases of primary (N=38) and salvage (N=7) PC patients treated with IRE. All patients had transperineal MRI/US fusion biopsy and PET-PSMA scan prior to treatment, to verify single lesion. Transperineal Nano-Knife IRE system was used in day-care theatre. Patients had 6 months mpMRI, blood PSA and 1 year confirmatory biopsy following procedure. Quality of life was recorded during the first year. Results: Median primary subgroup analysis (N=38): age 69 years, initial PSA 5.6 ng/dL, lesion size 0.8 mL and ISUP Group 2 (1-3). Median salvage subgroup analysis (N=7): age 76 years, initial PSA 11.9 ng/dL, lesion size 2.0 mL and ISUP Group 4 (1-5). Median catheter time 5 (3-7) days. No Clavien-Dindo>1 complications were reported nor re-admissions, incontinence, strictures or fistulas. 5% of patients were given PDE-5i drugs. Primary group PSA dropped by 39%, mpMRI clearance in 84%, out-field new lesion in 12%, in-field lesion in 4%. Biopsy at 1 year: 4 patients had out-field clinically significant PC, thus 3 had re-IRE and 1 had radiation therapy. Salvage subgroup MRI clearance was 60%, and 52% remained on active surveillance by 1 year. Conclusion: IRE treatment for focal PC is safe for primary and salvage cases, if done by a meticulously skilled and trained team, and under strict protocols. The short term oncological results are promising especially for primary lesions. Long term oncological results will be published over time.

8.
Vaccines (Basel) ; 11(2)2023 Jan 28.
Article in English | MEDLINE | ID: covidwho-2217108

ABSTRACT

DNA vaccines have inherent advantages compared to other vaccine types, including safety, rapid design and construction, ease and speed to manufacture, and thermostability. However, a major drawback of candidate DNA vaccines delivered by needle and syringe is the poor immunogenicity associated with inefficient cellular uptake of the DNA. This uptake is essential because the target vaccine antigen is produced within cells and then presented to the immune system. Multiple techniques have been employed to boost the immunogenicity and protective efficacy of DNA vaccines, including physical delivery methods, molecular and traditional adjuvants, and genetic sequence enhancements. Needle-free injection systems (NFIS) are an attractive alternative due to the induction of potent immunogenicity, enhanced protective efficacy, and elimination of needles. These advantages led to a milestone achievement in the field with the approval for Restricted Use in Emergency Situation of a DNA vaccine against COVID-19, delivered exclusively with NFIS. In this review, we discuss physical delivery methods for DNA vaccines with an emphasis on commercially available NFIS and their resulting safety, immunogenic effectiveness, and protective efficacy. As is discussed, prophylactic DNA vaccines delivered by NFIS tend to induce non-inferior immunogenicity to electroporation and enhanced responses compared to needle and syringe.

9.
Pharmaceutics ; 14(11)2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2082046

ABSTRACT

Vaccination against SARS-CoV-2 and other viral infections requires safe, effective, and inexpensive vaccines that can be rapidly developed. DNA vaccines are candidates that meet these criteria, but one of their drawbacks is their relatively weak immunogenicity. Electroporation (EP) is an effective way to enhance the immunogenicity of DNA vaccines, but because of the different configurations of the devices that are used for EP, it is necessary to carefully select the conditions of the procedure, including characteristics such as voltage, current strength, number of pulses, etc. In this study, we determined the optimal parameters for delivery DNA vaccine by electroporation using the BEX CO device. BALB/c mice were used as a model. Plasmid DNA phMGFP was intramuscular (I/M) injected into the quadriceps muscle of the left hind leg of animals using insulin syringes, followed by EP. As a result of the experiments, the following EP parameters were determined: direct and reverse polarity rectangular DC current in three pulses, 12 V voltage for 30 ms and 950 ms intervals, with a current limit of 45 mA. The selected protocol induced a low level of injury and provided a high level of GFP expression. The chosen protocol was used to evaluate the immunogenicity of the DNA vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 protein (pVAXrbd) injected by EP. It was shown that the delivery of pVAXrbd via EP significantly enhanced both specific humoral and cellular immune responses compared to the intramuscular injection of the DNA vaccine.

10.
EMBO Mol Med ; 14(10): e15821, 2022 10 10.
Article in English | MEDLINE | ID: covidwho-2067354

ABSTRACT

New variants in the SARS-CoV-2 pandemic are more contagious (Alpha/Delta), evade neutralizing antibodies (Beta), or both (Omicron). This poses a challenge in vaccine development according to WHO. We designed a more universal SARS-CoV-2 DNA vaccine containing receptor-binding domain loops from the huCoV-19/WH01, the Alpha, and the Beta variants, combined with the membrane and nucleoproteins. The vaccine induced spike antibodies crossreactive between huCoV-19/WH01, Beta, and Delta spike proteins that neutralized huCoV-19/WH01, Beta, Delta, and Omicron virus in vitro. The vaccine primed nucleoprotein-specific T cells, unlike spike-specific T cells, recognized Bat-CoV sequences. The vaccine protected mice carrying the human ACE2 receptor against lethal infection with the SARS-CoV-2 Beta variant. Interestingly, priming of cross-reactive nucleoprotein-specific T cells alone was 60% protective, verifying observations from humans that T cells protect against lethal disease. This SARS-CoV vaccine induces a uniquely broad and functional immunity that adds to currently used vaccines.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Nucleoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes , Vaccines, DNA/genetics , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Vaccines/genetics
11.
Medicina (Kaunas) ; 58(10)2022 Oct 07.
Article in English | MEDLINE | ID: covidwho-2066254

ABSTRACT

Irreversible electroporation (IRE) ablation is a novel treatment option for localized prostate cancer. Here, we present a case of an abrupt and fatal arrhythmia during the IRE procedure in a prostate cancer patient with an implanted permanent pacemaker. A 78-year-old male patient with a pacemaker due to sick sinus syndrome and syncope was scheduled for IRE prostate ablation surgery under general anesthesia. He had a history of recovering from coronavirus disease 2019 (COVID-19) after having been vaccinated against it and recovered without sequalae. Pacemaker interrogation and reprogramming to asynchronous AOO mode was carried out before surgery, however, sinus pause occurred repeatedly during ablation pulse delivery. After the first sinus pause of 2.25 s there was a decrease in continuous arterial blood pressure (ABP). During the delivery of the second and third pulses, identical sinus pauses were observed due to failure to capture. However, the atrial-paced rhythm recovered instantly, and vital signs became acceptable. Although sinus pause recovered gradually, the duration thereof was increased by the delivery of more IRE pulses, with a subsequent abrupt decrease seen in blood pressure. The pacemaker was urgently reprogrammed to DOO mode, after which there were no further pacing failures and no hemodynamic adverse events. For patients with pacemakers, close cardiac monitoring in addition to the interrogation of the pacemaker during the electromagnetic interference (EMI) procedure is recommended, especially in the case of having a disease that may aggravate cardiac vulnerability, such as COVID-19.


Subject(s)
COVID-19 , Pacemaker, Artificial , Prostatic Neoplasms , Male , Humans , Aged , Prostatic Neoplasms/surgery , Prostate , Pacemaker, Artificial/adverse effects , Postoperative Complications , Electroporation/methods
12.
Drug Delivery Letters ; 12(1):35-45, 2022.
Article in English | EMBASE | ID: covidwho-1968951

ABSTRACT

Background: Gene therapy is a promising approach for the treatment of various diseases, including cancer, hereditary disorders, and some viral infections. The development of efficient and safe gene delivery systems is essential for facilitating gene transfer to various organs and tissues in vivo. Objective: In this review, we briefly describe the principal mechanisms of gene delivery systems, particularly electroporation, and discuss the latest advancements in the application of electro-poration for in vivo gene transfer. Methods: A narrative review of all the relevant publication known to the authors was conducted. Results: In recent years, electroporation-based strategies have emerged as an auspicious and versa-tile platform for efficient and controlled delivery of various biomolecules, including nucleic acids. Applying electric pulses of enough magnitude leads to the formation of hydrophilic pores in the cell membrane and allows the entry of otherwise membrane-impermeant molecules, such as DNA. Alt-hough electroporation has been initially developed for in vitro transfection of cells, it has recently advanced to preclinical in vivo applications and finally to clinical trials. Conclusion: Electroporation has already entered the clinical practice for antitumor therapy and may be an essential part of future personalized treatments. Given the ability of electroporation to deliver multiple genes in a single event, it will also certainly be further developed both as a stand-alone delivery approach and when coupled with other technologies.

13.
Scandinavian Journal of Immunology ; 95(6), 2022.
Article in English | EMBASE | ID: covidwho-1968194

ABSTRACT

Vaccination is a successful tool against influenza. However, antigenic drift of the virus requires an annual update of the vaccine. A universal vaccine approach which can elicit immune responses reactive to ideally all seasonal as well as zoonotic influenza strains is urgently needed. To explore this we used a flexible DNA vaccine platform, increasing immunogenicity by targeting dimeric vaccine molecules to antigen-presenting cells (APCs). We hypothesize that when including multiple antigen variants from different influenza strains in one heterodimeric APC-targeted mix DNA vaccine, antibody responses can be focused on conserved epitopes which are shared between the different variants. Neuraminidase (NA) is the second most abundant surface protein on the influenza virus after hemagglutinin and has been established as an independent correlate of protection. We have previously shown that an APC-targeted DNA vaccine with NA induced highly protective antibody responses. NA is divided into 9 different subtypes (N1-N9), and two NA-like antigens in bats (N10 and N11). Here, we created a NA mix vaccine which successfully expressed heterodimeric vaccine molecules with 8 different NA variants (N2-N9) that were targeted to MHC class II on APCs. Upon intramuscular DNA immunization and electroporation in mice, the NA mix vaccine induced cross-reactive antibody responses towards N1, which was not included in the vaccine. The NA mix approach has the potential to fill knowledge gaps about NA immunity and would be a great advancement in universal vaccine design for influenza as well as for other emerging and rapidly changing viruses. WS5.4 ;SARS-CoV- 2- specific T cell responses to COVID-19 BNT162b2 vaccination in chronic lymphocytic leukaemia patients Lisa Blixt1,2;David Wullimann2;Soo Aleman1,2;Jeanette Lundin1,2;Puran Chen2;Yu Gao2;Angelica Cuapio2;Mira Akber2;Joshua Lange2;Olga Rivera-Ballesteros2;Marcus Buggert2;Hans-Gustaf Ljunggren2;Anders Hansson;Lotta1,2;Österborg1,2 1Karolinska University Hospital;Stockholm, Sweden;2Karolinska Institutet, Stockholm, Sweden Immunocompromised patients have an increased risk for severe disease and mortality from viral infection. Importantly, disease and treatment reduce humoral and cellular immune responses to vaccination, which offer the best protection from severe COVID-19 disease during the ongoing pandemic. We recently reported from a prospective clinical trial that BNT162b2 vaccination in different immunodeficient groups had significantly lower SARS-CoV- 2- specific antibody titers compared to healthy controls. The seroconversion rate observed was 63% in chronic lymphocytic leukaemia (CLL) patients, with a negative impact of ibrutinib treatment. Whether T cells in the absence of sufficient levels of SARS-CoV- 2- specific antibody titers can confer immunity after BNT162b2 vaccination remains unclear. We measured reactive SARS-CoV- 2- specific T cell responses in uninfected (naive) and previously infected CLL patients following BNT162b2 vaccination. Out of 52 naive CLL patients, 12 (29%) had a specific IFN-γ T cell response compared to 24/41 (59%) in controls after two doses. In previously infected CLL patients, mainly spike-specific CD8 T cells expanded after the third dose, at which 11/12 (92%) had detectable responses, and all 12 (100%) had spike-specific CD4 T cell responses. Relative to the Wuhan reference strain (wild-type) variant, the median reduction of antigen-specific CD8 and CD4 T cells to the B.1.1.529 (Omicron) variant were 51% and 13%, respectively. Collectively, these data indicate that CLL patients respond with T-cells specific to SARS-CoV- 2 spike protein after BNT162b2 vaccination or infection. The increased T-cell response rate after the third dose and ability to recognize the Omicron variant of concern demonstrates the importance of a booster dose in this patient group.

14.
Journal of New Materials for Electrochemical Systems ; 24(4):293-296, 2021.
Article in English | Web of Science | ID: covidwho-1811435

ABSTRACT

As human knowledge has increased, the efficacy and precision of tools to solve clinical problems have also increased. The challenge of COVID-19 has posed a significant threat to human life and reflects the need to upgrade existing technologies and make treatments more precise. Since the corona virus particle is in the nanometer range, the need for a device with accuracy beyond the nanometer range is apparent to control and eliminate it. Using Picosecond Pulsed Electric Fields (PPEF) could be a good antiviral picotechnology candidate. PPEF energy can (1) increase the innate immunity function of polymorphonuclear neutrophils, (2) destroy bacteria and other pathogens, and (3) potentially inactivate viral particles. This characteristic of PPEFs has already been used in the food industry. Both PPEF and nanosecond PEF technology is being used to treat cancer in research animals and has reached the stage of pre-clinical and clinical human trials with use in clinical practice soon to follow. Applying advanced PPEF technology against COVID-19 should provide new opportunities for effective human antiviral treatment. .

15.
Vaccine ; 40(21): 2960-2969, 2022 05 09.
Article in English | MEDLINE | ID: covidwho-1773836

ABSTRACT

The enhanced transmissibility and immune evasion associated with emerging SARS-CoV-2 variants demands the development of next-generation vaccines capable of inducing superior protection amid a shifting pandemic landscape. Since a portion of the global population harbors some level of immunity from vaccines based on the original Wuhan-Hu-1 SARS-CoV-2 sequence or natural infection, an important question going forward is whether this immunity can be boosted by next-generation vaccines that target emerging variants while simultaneously maintaining long-term protection against existing strains. Here, we evaluated the immunogenicity of INO-4800, our synthetic DNA vaccine candidate for COVID-19 currently in clinical evaluation, and INO-4802, a next-generation DNA vaccine designed to broadly target emerging SARS-CoV-2 variants, as booster vaccines in nonhuman primates. Rhesus macaques primed over one year prior with the first-generation INO-4800 vaccine were boosted with either INO-4800 or INO-4802 in homologous or heterologous prime-boost regimens. Both boosting schedules led to an expansion of T cells and antibody responses which were characterized by improved neutralizing and ACE2 blocking activity across wild-type SARS-CoV-2 as well as multiple variants of concern. These data illustrate the durability of immunity following vaccination with INO-4800 and additionally support the use of either INO-4800 or INO-4802 in prime-boost regimens.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Vaccination
16.
Open Forum Infectious Diseases ; 8(SUPPL 1):S387-S388, 2021.
Article in English | EMBASE | ID: covidwho-1746427

ABSTRACT

Background. DNA vaccines are safe, tolerable, elicit humoral and cellular responses, allow for repeated dosing over time, are thermostable at room temperature, and are easy to manufacture. We present a compilation of Phase 1 and Phase 2 data of Inovio's US COVID-19 DNA Vaccine (INO-4800) targeting the full-length Spike antigen of SARS-CoV-2. A South Korean Phase 2 study is ongoing. Methods. Participants in the open-label Phase 1 trial received 0.5 mg, 1.0 mg or 2.0 mg intradermally (ID) followed by electroporation (EP) at Days 0 and 28. An optional booster dose was administered >6 months post-dose 2. The Phase 2 further compared the 1.0 mg and 2.0 mg doses against placebo in a total of 401 participants randomized at a 3:3:1:1 ratio. ClinicalTrials.gov identifiers: NCT04336410 and NCT04642638 Results. The majority of adverse events (AEs) related to INO-4800 across both trials were mild in severity and did not increase in frequency with age and subsequent doses. In Phase 1, 78% (14/18) and 84% (16/19) of subjects generated neutralizing antibody responses with geometric mean titers (GMTs) of 17.4 (95%CI 8.3, 36.5) and 62.3 (95% CI 36.4, 106.7) in the 1.0 and 2.0 groups, respectively (Figure 1). By week 8, 74% (14/19) and 100% (19/19) subjects generated T cell responses by Th1- associated IFNγ ELISPOT assay . Following a booster dose, neutralizing GMTs rose to 82.2 (95% CI 38.2, 176.9) and 124.7 (95% CI 62.8, 247.7) in the 1.0 mg and 2.0 mg groups, respectively, demonstrating the ability of INO-4800 to boost (Figure 2). In Phase 2, neutralizing antibody responses demonstrated GMTs of 93.6 (95%CI 77.3, 113.4) in the 1.0 mg dose group and 150.6 (95%CI 123.8, 183.1) in the 2.0 mg dose group (Figure 3). Conclusion. INO-4800 appears safe and tolerable as a primary series and as a booster with the induction of both humoral and cellular immune responses. In addition to eliciting neutralizing antibodies, INO-4800 also induced T cell immune responses as demonstrated by IFNγ ELISpot. Finally, as a homologous booster, INO-4800, when administered 6-10.5 months following the primary series, resulted in an increased immune response without increase in reactogenicity. The 2.0 mg dose was selected for Phase 3 evaluation.

17.
Front Physiol ; 12: 786255, 2021.
Article in English | MEDLINE | ID: covidwho-1725424

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome that leads to acute respiratory failure and accounts for over 70,000 deaths per year in the United States alone, even prior to the COVID-19 pandemic. While its molecular details have been teased apart and its pathophysiology largely established over the past 30 years, relatively few pharmacological advances in treatment have been made based on this knowledge. Indeed, mortality remains very close to what it was 30 years ago. As an alternative to traditional pharmacological approaches, gene therapy offers a highly controlled and targeted strategy to treat the disease at the molecular level. Although there is no single gene or combination of genes responsible for ARDS, there are a number of genes that can be targeted for upregulation or downregulation that could alleviate many of the symptoms and address the underlying mechanisms of this syndrome. This review will focus on the pathophysiology of ARDS and how gene therapy has been used for prevention and treatment. Strategies for gene delivery to the lung, such as barriers encountered during gene transfer, specific classes of genes that have been targeted, and the outcomes of these approaches on ARDS pathogenesis and resolution will be discussed.

18.
Cancer Immunology Research ; 10(1 SUPPL), 2022.
Article in English | EMBASE | ID: covidwho-1677458

ABSTRACT

Despite extensive clinical evidence on the efficacy and safety of SARS-CoV-2 vaccines, there remains a paucity of data on their effectiveness in cancer patients who are actively receiving antineoplastic therapeutics. A recent study demonstrated only ∼30% of cancer patients had positive serologic test following 2 doses of FDA-authorized SARS-CoV-2 vaccines, in contrast to ∼80% positivity rate in healthy individuals, regardless of the age. Therefore, furtherinvestigation into novel approaches to boost immune response to SARS-CoV-2 vaccines in cancer patients isrequired. Our previous preclinical and clinical studies have established intratumoral IL-12 plasmid (TAVO)electroporation (EP) induces localized expression of IL-12p70, converting immune-excluded tumors into inflamedimmunogenic lesions, thereby generating objective responses in both treated and untreated, distant tumors. Basedon the enhancement of immunotherapy efficacy by IL-12, we leveraged the flexibility of our DNA plasmid-EPplatform to express SARS-CoV-2 spike protein in addition to IL-12 (CORVax12) as an intratumoral vaccine candidate which we hypothesized could not only drive anti-SARS-CoV-2 immune responses but also generate aproductive anti-tumor response. Naïve mice were vaccinated via intradermal injection of SARS-CoV-2 spike plasmidfollowed immediately by EP with or without plasmid-encoded mIL-12 on days 1 and 21. Longitudinal serum samples were collected to interrogate virus-specific cellular responses as well anti-spike IgG antibody. A surrogate viralneutralization test (sVNT) assessed serum blockade of soluble human ACE2 binding to immobilized SARS-CoV-2spike. Our data demonstrated that intradermally electroporated CORVax12 elicits significantly higher anti-SARS-CoV-2 spike IgG antibodies and neutralization when compared with EP of SARS-CoV-2 spike alone. Next, we askedif improved SARS-CoV-2 immune response may be observed when CORVax12 is incorporated into intratumoral EPin single-tumor bearing mice. CORVax12 robustly inhibited tumor growth, induced high percentages of germinal-center B cells and class switched B cells in tumor draining lymph nodes, and generated high of anti-spike IgG and neutralization antibodies. To further investigate systemic effects of this combination, we continued with contralateraltumor mice models. In both CT26 and B16-F10 tumor models, CORVax12 intratumoral EP induced strong systemicanti-tumor responses similar to IL-12 EP alone while also producing high serum levels of anti-SARS-CoV-2 spikeIgG and neutralization antibodies. Critically, this anti-viral immunity did not limit this IL-12-based intratumoral anti-tumor therapy. In summary, our preclinical data indicates that intratumoral EP of CORVax12 can induce IgGresponses to SARS-CoV-2 spike as well as apparent viral neutralizing activity all while maintaining local and systemic anti-tumor effects expected from TAVO Treatment. This combined intratumoral therapy represents a novelstrategy to address both tumor burden and anti-SARS-CoV-2 immunity in patients with cancer.

19.
Front Med Technol ; 2: 571030, 2020.
Article in English | MEDLINE | ID: covidwho-1639212

ABSTRACT

DNA vaccines are considered as a third-generation vaccination approach in which antigenic materials are encoded as DNA plasmids for direct in vivo production to elicit adaptive immunity. As compared to other platforms, DNA vaccination is considered to have a strong safety profile, as DNA plasmids neither replicate nor elicit vector-directed immune responses in hosts. While earlier work found the immune responses induced by DNA vaccines to be sub-optimal in larger mammals and humans, recent developments in key synthetic DNA and electroporation delivery technologies have now allowed DNA vaccines to elicit significantly more potent and consistent responses in several clinical studies. This paper will review findings from the recent clinical and preclinical studies on DNA vaccines targeting emerging infectious diseases (EID) including COVID-19 caused by the SARS-CoV-2 virus, and the technological advancements pivotal to the improved responses-including the use of the advanced delivery technology, DNA-encoded cytokine/mucosal adjuvants, and innovative concepts in immunogen design. With continuous advancement over the past three decades, the DNA approach is now poised to develop vaccines against COVID-19, as well as other EIDs.

20.
Pharmaceutics ; 13(11)2021 Nov 06.
Article in English | MEDLINE | ID: covidwho-1538441

ABSTRACT

Since the first approval of monoclonal antibodies by the United States Food and Drug Administration (FDA) in 1986, therapeutic antibodies have become one of the predominant classes of drugs in oncology and immunology. Despite their natural function in contributing to antiviral immunity, antibodies as drugs have only more recently been thought of as tools for combating infectious diseases. Passive immunization, or the delivery of the products of an immune response, offers near-immediate protection, unlike the active immune processes triggered by traditional vaccines, which rely on the time it takes for the host's immune system to develop an effective defense. This rapid onset of protection is particularly well suited to containing outbreaks of emerging viral diseases. Despite these positive attributes, the high cost associated with antibody manufacture and the need for a cold chain for storage and transport limit their deployment on a global scale, especially in areas with limited resources. The in vivo transfer of nucleic acid-based technologies encoding optimized therapeutic antibodies transform the body into a bioreactor for rapid and sustained production of biologics and hold great promise for circumventing the obstacles faced by the traditional delivery of antibodies. In this review, we provide an overview of the different antibody delivery strategies that are currently being developed, with particular emphasis on in vivo transfection of naked plasmid DNA facilitated by electroporation.

SELECTION OF CITATIONS
SEARCH DETAIL